Ch. 9 Properties of Transformations

9.1 Translate Figures and Use Vectors

- Translate: Slide
- Preimage \longrightarrow image
- Rule: $(x, y) \longrightarrow(x+a, y+b)$
$-A B C \longrightarrow A^{\prime} B^{\prime} C^{\prime}$
- Isometry: same length, same angles
- Congruent transformation
- A translation is an isometry
- Vectors: used in a translation
- Initial point and terminal point
- Quantity that has both:
- 1.) direction and 2.) magnitude (size)
- Component: 〈horizontal move, vertical move〉

9.2 Matrices

- Matrix: rectangular arrangement of numbers
- Matrices (plural)
- A way to collect data (like x / y points)
- Rows (across)
- Columns (down)
- Dimensions: row x column
- Each number an element
- Add or Subtract Matrices: Each element
- Multiply: Each Row by Column, then add parts
- Row elements must match column elements

9.3 Reflections

- Reflection: transformation
- Uses a line like a mirror to reflect the image
- Line of Reflection
- 4 Reflections:
- 1. x-axis $(x, y) \longrightarrow(x,-y)$
- 2. y-axis $\quad(x, y) \longrightarrow(-x, y)$
-3. Line $y=x \quad(x, y) \longrightarrow(y, x)$
-4 . Line $y=-x \quad(x, y) \longrightarrow(-y,-x)$

9.4 Perform Rotations

- Transformations:
- 1. Translation (slide)
- 2. Reflection (flip)
- 3. Rotation (turn)
- Rotation: turn on a fixed point called the

Center of rotation
Forms an Angle of rotation
Clockwise or Counterclockwise (we will use)

- Angle of Rotations: $90^{\circ}, 180^{\circ}, 270^{\circ}, 360^{\circ}$
- $90^{\circ}(x, y) \longrightarrow(-y, x)$ or Matrix $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$
- $180^{\circ}(x, y) \longrightarrow(-x,-y)$ or Matrix $\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$
- $270^{\circ}(x, y) \longrightarrow(y,-x)$ or Matrix $\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$

9.5 Apply Compositions of Transformations

- Glide: 1. translation 2. reflection
- Composition: 2 or more transformations
- Theorem: Reflections in Parallel Lines
- Reflect/ reflect again lines k and m
- 1. PP‘ perpendicular to lines k and m
$-2 . P P^{\prime}=2 x$ distance between lines k and m

Theorem: Reflection in Intersecting Lines reflect/ reflect again
lines k and m intersect

1. Angle $B^{\prime}=2 x$ the angle of k and m

9.6 Symmetry

- 1. Line of Symmetry is the line of reflection
- An image can have more that 1 line of symmetry
- 2. Rotational Symmetry: image mapped onto itself by rotating 180° or less
- Point of rotation: center of symmetry

9.7 Dilations

- Transformations:
- 1. Translation 2. Reflection \quad 3. Rotation
- All keep congruency (isometry)
-4. Dilation: transformation where original figure and new image are Similar
- $\mathrm{k}=$ scale factor $\frac{C P^{\prime}}{C P}=\frac{\text { distancce new image }}{\text { distance old image }}$
- $0<k<1$ Reduction
- K>1 Enlargement
- Matrices: Scalar Multiplication
- Multiplication by a real number (scalar)
- Dilation with Matrices
- Multiplication by scale factor (which is the scalar)

