Ch. 6 Similar Polygons

6.1 Use Similar Polygons

- Congruent: All sides and All angles equal
- Similar: All angles equal, sides in proportion
- Scale Factor: A ratio of corresponding sides:
- Reduced
- For two shapes to be similar: all ratios reduce to scale factor
- You can use similarity to find the missing sides of a polygon: make ratios of sides
- The ratio of one perimeter to another perimeter = scale factor
- If 2 shapes congruent, then there is $1: 1$ scale factor
- If 2 shapes similar, then any 2 corresponding lengths = scale factor
- Corresponding lengths: altitudes, medians, midsegments

6.2 Transformations and Similarity

- Transformations: with congruence
- 1. translation (slide)
- 2. reflection (flip)
- 3. rotation (turn)
- Dilation: with similarity
- 1. stretch or shrink

6.3 Prove Two Triangles Similar by AA

AA Postulate

- If 2 angles of one triangle $\cong 2$ angles of another triangle, Then the 2 triangles are Similar.

6.4 Prove Triangles Similar by SSS and

SAS

- To Prove 2 triangles Similar:
-1 . Show all angles $=$, all sides in proportion
- 2. Show 2 angles congruent AA
- 3. Show all sides in proportion SSS
- 4. Show 2 sides in proportion and included angles congruent SAS

6.5 Use Proportionality Theorems

- Theorem 1:
- If 2 segments parallel, then sides in proportion
- If sides in proportion, then 2 segments parallel

- Theorem 2:
- If 3 lines are parallel and cut by 2 transversals, then sides all in proportion
- Theorem 3:
- If ray bisects an angle in triangle, then divides the triangle proportionally

6.6 Perform Similarity Transformations

- A dilation is a type of similarity
- Center of dilation: fixed point
- Dilation with respect to origin:
$-(x, y) \rightarrow(k x, k y)$
- If $0<k<1$ reduction
- If $k>1$ enlargement

