Ch. 5 Relationships within Triangles

5.1 Midsegment Theorem and Coordinate Proof

- Midsegment: segment that connects midpoints.
- One triangle has 3 midsegments
- Midsegment parallel to side
- Midsegment $=\frac{1}{2}$ side
- Coordinate Proof: place a figure on a graph
- Use origin as one of vertices
- Formulas to Remember:
- Distance: $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}}+\left(y_{2}-y_{1}\right)^{2}$
- Midpoint: $\left(\frac{x_{2}+x_{1}}{2}, \frac{y_{2}+y_{1}}{2}\right)$
- Slope: $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

5.2 Use Perpendicular Bisectors

- Perpendicular Bisector:
- Can be a ray, line, plane, segment
- Is perpendicular at the midpoint
- All points on the perpendicular bisector are equidistant from endpoints of segment

Perpendicular Bisector Theorem

- Concurrency: when 3 or more lines intersect ant the same point (point of concurrency)
- Theorem: If the segments of perpendicular bisectors meet at point, then distance from point to vertex is equal.
- Circumcenter: point of concurrency of 3 perpendicular bisectors.
- P circumcenter
- P same distance to all 3 vertices
- P center of circle outside triangle that touches all 3 vertices

5.3 Use Angle Bisectors of Triangle

- 1. Midsegment
- 2. Perpendicular bisector of segment
- 3. Angle Bisector: ray that divides an angle into $2 \cong$ angles
- Distance: perpendicular segment
- Theorem: If angle bisector and perpendicular, then distance to bisector equal
- Converse true
- Theorem: Concurrency of Angle Bisector $\boldsymbol{\Delta}$
- The point of concurrency of the angle bisectors is equal distance to the triangle
- P incenter: center of circle inside triangle

5.4 Medians and Altitudes

- Median: balance point in triangle
- Segment from vertex to midpoint
- 3 medians concurrent: centroid
- vertex to centroid $=\frac{2}{3}$ segment
- Altitude: Height of triangle
- Segment from vertex to side, perpendicular
- In triangle, on triangle, or outside triangle
- Isosceles Triangle:
- From Vertex:
- Perpendicular Bisector
- Angle Bisector
- Median
- Altitude
- ALL EQUAL

- Equilateral Triangle:
- From ANY angle
- Perpendicular Bisector
- Angle Bisector
- Median
- Altitude
- ALL EQUAL

Points in a Triangle:

- Incenter: when angle bisectors meet.
- Distance to sides equal
- Circumcenter: when perpendicular bisectors meet.
- Distance to vertices equal
- Centroid: when medians meet
- Distance $=\frac{2}{3}$ segment
- Orthocenter: when altitudes meet
- Can be in triangle, on triangle, or out of triangle

Summary of Parts

- 1. Midsegment: midpoint to midpoint
- 2. Perpendicular Bisector: thru midpoint
- 3. Angle Bisector: cuts angle
- 4. Median: from angle to midpoint
- 5. Altitude: $]$ height from angle to ground

5.5 Inequalities in a Triangle

- In a Triangle:
- The longest side is opposite the largest angle
- The shortest side is opposite the smallest angle
- Theorem:
- If $A B>B C$, Then $m<C>m<A$
- Converse:
- If $m<C>m<A$, Then $A B>B C$
- Can't always make a triangle with 3 sticks
- The sticks must be a certain length to work
- Theorem: The sum of any 2 sides of a triangle must be > third side

5.6 Inequalities in 2 Triangles and Indirect Proof

- Hinge Theorem:
- If 2 triangles have 2 sides congruent and the included angle gets bigger, then the third side gets bigger. Involves 2 triangles
- Indirect Proof: Proof of Contradiction
- Starts by assuming the opposite of concluded proof

