Ch. 5 Relationships within Triangles

5.1 Midsegment Theorem and Coordinate Proof

- **Midsegment**: segment that connects midpoints.
 - One triangle has 3 midsegments
 - Midsegment parallel to side

- Midsegment =
$$\frac{1}{2}$$
 side

- Coordinate Proof: place a figure on a graph
 Use origin as one of vertices
- Formulas to Remember:

- Distance:
$$d = \sqrt{(x_2 - x_1)^2} + (y_2 - y_1)^2$$

- Midpoint: $\left(\frac{x_2 + x_1}{2}, \frac{y_2 + y_1}{2}\right)$
- Slope: $= \frac{y_2 - y_1}{x_2 - x_1}$

5.2 Use Perpendicular Bisectors

• Perpendicular Bisector:

- Can be a ray, line, plane, segment
- Is perpendicular at the midpoint
- All points on the perpendicular bisector are equidistant from endpoints of segment

- **Concurrency**: when 3 or more lines intersect ant the same point (point of concurrency)
- **Theorem**: If the segments of perpendicular bisectors meet at point, then distance from point to vertex is equal.
- **Circumcenter**: point of concurrency of 3 perpendicular bisectors.
 - P circumcenter
 - P same distance to all 3 vertices
 - P center of circle outside triangle that touches all 3 vertices

5.3 Use Angle Bisectors of Triangle

- 1. Midsegment
- 2. Perpendicular bisector of segment
- 3. Angle Bisector: ray that divides an angle into 2 ≅ angles
 - Distance: perpendicular segment
- **Theorem**: If angle bisector and perpendicular, then distance to bisector equal
- Converse true

- Theorem: Concurrency of Angle Bisector Δ
 - The point of concurrency of the angle bisectors is equal distance to the triangle
 - P incenter: center of circle inside triangle

5.4 Medians and Altitudes

- Median: balance point in triangle
 - Segment from vertex to midpoint
 - 3 medians concurrent: centroid
 - vertex to centroid = $\frac{2}{3}$ segment
- Altitude: Height of triangle
 - Segment from vertex to side, perpendicular
 - In triangle, on triangle, or outside triangle

- Isosceles Triangle:
 - From Vertex:
 - Perpendicular Bisector
 - Angle Bisector
 - Median
 - Altitude
 - ALL EQUAL

- Equilateral Triangle:
 - From ANY angle
 - Perpendicular Bisector
 - Angle Bisector
 - Median
 - Altitude
 - ALL EQUAL

Points in a Triangle:

- **Incenter**: when angle bisectors meet.
 - Distance to sides equal
- Circumcenter: when perpendicular bisectors meet.
 Distance to vertices equal
- **Centroid**: when medians meet - Distance = $\frac{2}{3}$ segment
- Orthocenter: when altitudes meet
 - Can be in triangle, on triangle, or out of triangle

Summary of Parts

- 1. **Midsegment**: midpoint to midpoint
- 2. Perpendicular Bisector: [] thru midpoint
- 3. Angle Bisector: cuts angle
- 4. Median: from angle to midpoint
- 5. Altitude: I height from angle to ground

5.5 Inequalities in a Triangle

- In a Triangle:
 - The longest side is opposite the largest angle
 - The shortest side is opposite the smallest angle

• Theorem:

- If AB > BC, Then m < C > m < A

• Converse:

- If m < C > m < A, Then AB > BC

- Can't always make a triangle with 3 sticks
- The sticks must be a certain length to work

 Theorem: The sum of any 2 sides of a triangle must be > third side

5.6 Inequalities in 2 Triangles and Indirect Proof

- Hinge Theorem:
 - If 2 triangles have 2 sides congruent and the included angle gets bigger, then the third side gets bigger. Involves 2 triangles
- Indirect Proof: Proof of Contradiction
 - Starts by assuming the opposite of concluded proof