Chapter 3

Parallel and Perpendicular Lines

3.1 Pairs of Lines and Angles

- 2 lines: that do NOT intersect
- 1. Parallel: coplanar
- 2. Skew: not coplanar
- 2 Planes: that do NOT intesect
- Are parallel
- 2 lines in a plane.....
- Postulate 13: Parallel Postulate
- There is only 1 line parallel to another line through point A
- Postulate 14: Perpendicular Postulate
- There is only 1 line perpendicular to another line through point A

2 Lines cut by a Transversal (line)

- 2 lines cut by a transversal (line)
- Form special pairs of angles
- 1. Corresponding Angles
- 2. Alternate Interior Angles
- 3. Alternate Exterior Angles
- 4. Consecutive Angles

3.2 Use Parallel Lines and Transversals

- If the 2 lines are PARALLEL....
- Postulate: Corresponding Angles
- If 2 lines are parallel, then the corresponding angles are congruent

Theorems

- If 2 lines are parallel, the Alternate Interior \cong
- If 2 lines are parallel, the Alternate Exterior \cong
- If 2 lines are parallel, the Consecutive 180°

Pairs of Angles

- $\mathrm{VA} \cong$
- Corresponding \cong
- AIA \cong
- $A E A \cong$
- Consecutive 180°
- Linear Pair 180°

3.3 Prove Lines are Parallel

- Postulate: If corresponding angles are \cong, then the lines are parallel
- Theorems:
- IF AIA \cong, then lines II
- IF AEA \cong, then lines II
- IF Consecutive $<^{\prime} s$ supplementary, then lines II

3.4 Find and Use Slopes of Lines

- Slope: tilt, slant of line
- The bigger the number the steeper the line
- Slope: $\frac{\text { vertical change }(y)}{\text { horizontal change }(x)}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
- Between 2 points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$
- Slopes: + , -, 0 (horizontal) , or undefined (vertical)
- Postulate: Slopes of Parallel Lines
- Two lines are parallel iff $m_{1}=m_{2}$
- Postulate: Slopes of Perpendicular Lines
- Two lines are perpendicular iff $m_{1}=-\frac{1}{m_{2}}$
- To determine if two lines are parallel or perpendicular......USE SLOPE

3.5 Write and Graph Equations of Lines

- To write an equation of a line need 2 things:
- Slope (m) and y-intercept (b)
- Use $y=m x+b$
- May need to plug in (x, y) to find b
- If writing parallel line: Use $m_{1}=m_{2}$
- If writing perpendicular line: Use $m_{1}=-\frac{1}{m_{2}}$
- To Graph Lines: Draw a picture of all points
- 1. Standard Form: $A x+B y=C$
- Use intercepts: x-int $x=$ and y-int $y=$
- 2. Slope-Intercept Form: $y=m x+b$
- Use y-int: b
- Then slope rise/run

3.6 Prove Theorems about Perpendicular Lines

- Rules...
- Theorem 3.8:
- If two lines intersect to form a linear pair of congruent angles.....
- Then the lines are Perpendicular.
- Theorem 3.9:
- If two lines are perpendicular.....
- Then they intersect to form 4 right angles
- Theorem 3.10:
- If two sides of two adjacent acute angles are perpendicular.....
- Then the angles are complementary

Theorem 3.11 Perpendicular Transversal Theorem

- If a transversal is perpendicular to one of two parallel lines, then it is perpendicular to the other.

Theorem 3.12: Lines Perpendicular to a Transversal

- In a plane, if two lines are perpendicular to the same line, then they are parallel to each other.
- Distance between 2 parallel lines:
- Is measured with the perpendicular
- Find 2 points, one on each line
- Use the Distance Formula

Distance Formula

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

