Ch. 10 Circles

10.1 Properties of Tangents

- Circle: set of all points equal distance from a center point
- Radius: segment, from center to edge of circle
- Chord: segment inside circle, endpoints on circle
- Diameter: segment, chord through center
- Secant: line, intersects the circle in 2 points
- Tangent: line or ray, intersects the circle once at the point of tangency, outside the circle
- Coplanar Circles:
- 2 circles that intersect twice, once or not at all
- Common Tangent:
- A tangent line, ray, or segment that touches both circles
- Theorem: A line is tangent to a circle iff that line is perpendicular to the radius
- Theorem: Tangents from a common point are congruent

10.2 Arc Measures

- Central Angle: an angle inside the circle, vertex at the center
- Arc: Piece of the circle (360°)
- Angle forms Arc:
- measure of central angle $=$ the measure of the arc.
- Minor Arc: less than $180^{\circ}, \mathrm{AB}$
- Major Arc: more than 180°, ABC
- Semicircle: $=180^{\circ}$
- Adjacent arcs: common endpoint
- Arc Addition: $\operatorname{arcAB}+\operatorname{arcBC}=\operatorname{arcABC}$
- Congruent Circles: Have the same radius
- Congruent Arcs: Have the same measure and come from same circle or congruent circles

10.3 Properties of Chords

- Chord: segment inside the circle
- Creates minor arc and major arc
- Theorem: 2 arcs are congruent iff 2 chords are congruent
- Theorem: If a chord is a perpendicular of another chord then it is a diameter
- Theorem: If a diameter is a chord, then it bisects the other chord and the arc
- Theorem: 2 chords are congruent iff they are equal distance from the center (the perpendicular)

10.4 Inscribed Angles and Polygons

- Angles inside the Circle:
- 1. Central Angle: vertex at center, = arc
- 2. Inscribed Angle: vertex on circle, $=\frac{1}{2}$ arc
- Polygons in Circles:
- Polygon - inscribed
- Circles - circumscribed
- Theorem: If right triangle is inscribed, then hypotenuse is diameter
- If hypotenuse = diameter, then it's a right triangle
- Theorem: A quadrilateral can be inscribed iff the opposite angles are supplementary

10.5 Other Angles in Circles

- 1. Angle on Circle: tangent and chord, $\frac{1}{2}$ arc
- 2. Intersecting Lines:
- a. Angles inside circle: the angle $=\frac{1}{2}(\operatorname{arc}+\operatorname{arc})$
-b. Angles outside circle: the angle $=\frac{1}{2}(\operatorname{arc}-\operatorname{arc})$

10.6 Segment Lengths in Circles

- 2 Chords: intersect in a circle, each chord divided into 2 segments
- segment \cdot segment $=$ segment \cdot segment
- 2 secants:
- top \cdot whole $=$ top \cdot whole
- Secant and Tangent:
- top \cdot whole $=$ side2

10.7 Write Equations and Graph Circles

- To Write equation of Circle need 2 things:
- 1. Center point
- 2. radius
- If center at origin $(0,0)$ then.... $x^{2}+y^{2}=r^{2}$
- If center (h, k) then.... $(x-h)^{2}+(y-k)^{2}=r^{2}$
- To Graph the Circle:
- Plot the center
- Use the radius to make 4 points

