Ch. 10 Circles

10.1 Properties of Tangents

- **Circle**: set of all points equal distance from a center point
- Radius: segment, from center to edge of circle
- **Chord**: segment inside circle, endpoints on circle
- **Diameter**: segment, chord through center

- Secant: line, intersects the circle in 2 points
- **Tangent**: line or ray, intersects the circle once at the point of tangency, outside the circle
- Coplanar Circles:
 - 2 circles that intersect twice, once or not at all
- Common Tangent:
 - A tangent line, ray, or segment that touches both circles

• **Theorem**: A line is tangent to a circle iff that line is perpendicular to the radius

• **Theorem**: Tangents from a common point are congruent

10.2 Arc Measures

- **Central Angle**: an angle inside the circle, vertex at the center
- Arc: Piece of the circle (360°)

- Angle forms Arc:
- measure of central angle = the measure of the arc.

- Minor Arc: less than 180°, AB
- Major Arc: more than 180 °, ABC
- Semicircle: = 180 °

- Adjacent arcs: common endpoint
- Arc Addition: arcAB + arcBC = arcABC

• **Congruent Circles**: Have the same radius

• **Congruent Arcs**: Have the same measure and come from same circle or congruent circles

10.3 Properties of Chords

• **Chord**: segment inside the circle

– Creates minor arc and major arc

• **Theorem**: 2 arcs are congruent iff 2 chords are congruent

• **Theorem**: If a chord is a perpendicular of another chord then it is a diameter

• **Theorem**: If a diameter is a chord, then it bisects the other chord and the arc

• **Theorem**: 2 chords are congruent iff they are equal distance from the center (the perpendicular)

10.4 Inscribed Angles and Polygons

- Angles inside the Circle:
 - 1. **Central Angle**: vertex at center, = arc
 - 2. Inscribed Angle: vertex on circle, $=\frac{1}{2}$ arc
- Polygons in Circles:
 - Polygon inscribed
 - Circles circumscribed

• **Theorem**: If right triangle is inscribed, then hypotenuse is diameter

– If hypotenuse = diameter, then it's a right triangle

• **Theorem**: A quadrilateral can be inscribed iff the opposite angles are supplementary

10.5 Other Angles in Circles

- 1. Angle on Circle: tangent and chord, $\frac{1}{2}$ arc
- 2. Intersecting Lines:

- a. Angles inside circle: the angle = $\frac{1}{2}$ (arc + arc)

- b. Angles outside circle: the angle = $\frac{1}{2}$ (arc – arc)

10.6 Segment Lengths in Circles

• 2 Chords: intersect in a circle, each chord divided into 2 segments

– segment·segment = segment·segment

• 2 secants:

- top·whole = top·whole

Secant and Tangent:
top·whole = side2

10.7 Write Equations and Graph Circles

- **To Write equation** of Circle need 2 things:
 - 1. Center point

– 2. radius

- If center at origin (0,0) then $\dots x^2 + y^2 = r^2$
- If center (h,k) then.... $(x h)^2 + (y k)^2 = r^2$

- To Graph the Circle:
 - Plot the center
 - Use the radius to make 4 points