Ch. 4 Congruent Triangles

Chapter 4

4.1 Triangle Sum Properties

• Triangle: A polygon with 3 sides

- Classify By Sides:
 - Scalene: no = sides
 - Isosceles: 2 sides =
 - Equilateral: 3 sides =

Classify By Angles

- Acute: All angles acute
- -Obtuse: One Obtuse angle
- Right: One right angle
- Equiangular: All = angles

- Angles:
 - Interior Angles: inside triangle
 - Exterior Angles: outside triangle
- Theorem: Triangle Sum Theorem
 - The sum of the measures of the interior angles of a triangle is 180°

• Theorem: Exterior Angle

 An exterior angle of a triangle = the sum of the two nonadjacent interior angles

Corollary to Interior Angle Sum

 The acute angles of a right triangle are complementary

4.2 Apply Congruence and Triangles

• **Congruent**: same shape, same size

- 2 Triangles Congruent (To Prove)
 - 1. All Corresponding sides \cong
 - 2. All Corresponding angles \cong
 - Order Important

• Theorem: Third Angle

- If two angles of one triangle are \cong to two angles of another triangle,
- Then the third angles are congruent

4.3 Transformations and Congruence

- Transformation: to move or change a figure
- Rigid Motion: Type of transformation
 - Preserves the length, angle measures, and area
 - Called isometry
 - 3 Types
 - Translation: slide
 - Reflection: flip
 - Rotation: turns
 - Maintains Congruence

4.4 Prove Triangles Congruent by SSS

- Postulate: Side-Side-Side Congruence
 - If 3 sides of one Δ are \cong to 3 sides of another Δ
 - Then the two triangles are \cong

• Note: the order a congruence statement is written is important

The congruent sides and angles must match

4.5 Prove Triangles Congruent by SAS and HL

Postulate: SAS Congruence

- If 2 sides and included angle of one triangle are \cong To 2 sides and the included angle of another triangle, Then the triangles are \cong .

SSA NOT true unless it's a **Right Triangle** (HL) If the hypotenuse and leg of right triangle is congruent to the hypotenuse and leg of another triangle, Then the triangles are \cong .

4.6 Prove Triangles Congruent by ASA and AAS

- Postulate 21: ASA Congruence
 - If two angles and the included side are congruent to the corresponding angles and side,

Then the triangles are congruent.

Theorem: AAS Congruence

- If 2 angles and any other side are congruent to the corresponding angles and side,
- Then the triangles are congruent.

Ways to Prove 2 Triangles Congruent

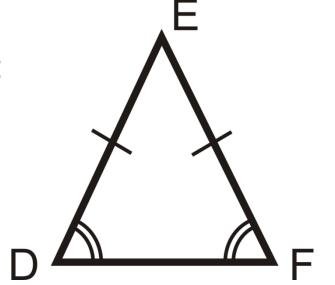
- 1. SSS
- 2. SAS
- 3. HL
- 4. ASA
 - 5. AAS

4.7 Use Congruent Triangles

- If 2 triangles are congruent.....
- Then all the corresponding parts are congruent.
- CPCTC
- Corresponding Parts of Congruent
 Triangles are Congruent

• To Prove Corresponding sides or angles are \cong

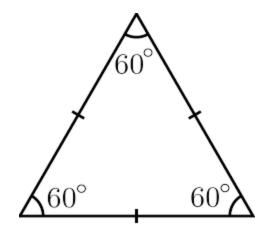
• First Prove the two triangles are \cong .


4.8 Use Isosceles and Equilateral Triangles

• 2 Special triangles.

- 1. The Isosceles Triangle:
 - If 2 sides $\Delta \cong$,

then base angles \cong .


If Base angles ≅,
 then 2 legs ≅.

BAIT \cong **B**ase **A**ngles of Isosceles **T**riangle \cong

• Equilateral Triangle:

• Corollary:

- If Triangle is equilateral, then it is equiangular.
- If Triangle is equiangular, then it is equilateral.

4.9 Perform Congruence Transformations

• **Transformation**: operation that moves a figure.

- 3 kinds:
 - -1. translation (slide)
 - 2. reflection (flip)
 - 3. rotation (turn)

- 1. Translation: $(x,y) \rightarrow (x + a, y + b)$
- 2. Reflection:
 - In the x-axis $(x,y) \rightarrow (x, -y)$
 - In the y-axis $(x,y) \rightarrow (-x, y)$

• 3. Rotation:

- preserves the distance from the center (pivot point)
- Clockwise/ counterclockwise
- Angle of rotation given