Ch. 4 Congruent Triangles

Chapter 4

4.1 Triangle Sum Properties

- Triangle: A polygon with 3 sides
- Classify By Sides:
- Scalene: no = sides
- Isosceles: 2 sides =
- Equilateral: 3 sides =

Classify By Angles

- Acute: All angles acute
-Obtuse: One Obtuse angle
- Right: One right angle
- Equiangular: All = angles
- Angles:
- Interior Angles: inside triangle
- Exterior Angles: outside triangle
- Theorem: Triangle Sum Theorem
- The sum of the measures of the interior angles of a triangle is 180°
- Theorem: Exterior Angle
- An exterior angle of a triangle $=$ the sum of the two nonadjacent interior angles
- Corollary to Interior Angle Sum
- The acute angles of a right triangle are complementary

4.2 Apply Congruence and Triangles

- Congruent: same shape, same size
- 2 Triangles Congruent (To Prove)
- 1. All Corresponding sides \cong
- 2. All Corresponding angles \cong
- Order Important
- Theorem: Third Angle
- If two angles of one triangle are \cong to two angles of another triangle,
Then the third angles are congruent

4.3 Transformations and Congruence

- Transformation: to move or change a figure
- Rigid Motion: Type of transformation
- Preserves the length, angle measures, and area
- Called isometry
- 3 Types
- Translation: slide
- Reflection: flip
- Rotation: turns
- Maintains Congruence

4.4 Prove Triangles Congruent by SSS

- Postulate: Side-Side-Side Congruence
- If 3 sides of one Δ are \cong to 3 sides of another Δ
- Then the two triangles are \cong
- Note: the order a congruence statement is written is important
- The congruent sides and angles must match

4.5 Prove Triangles Congruent by SAS and HL

- Postulate: SAS Congruence
- If 2 sides and included angle of one triangle are \cong

To 2 sides and the included angle of another triangle, Then the triangles are \cong.

SSA NOT true unless it's a Right Triangle (HL) If the hypotenuse and leg of right triangle is congruent to the hypotenuse and leg of another triangle, Then the triangles are \cong.

4.6 Prove Triangles Congruent by ASA and AAS

- Postulate 21: ASA Congruence
- If two angles and the included side are congruent to the corresponding angles and side,
Then the triangles are congruent.
Theorem: AAS Congruence
- If 2 angles and any other side are congruent to the corresponding angles and side,
- Then the triangles are congruent.

Ways to Prove 2 Triangles Congruent

- 1. SSS
- 2. SAS
- 3. HL
- 4. ASA

5. AAS

4.7 Use Congruent Triangles

- If 2 triangles are congruent.....
- Then all the corresponding parts are congruent.
- СРСTC
- Corresponding Parts of Congruent Triangles are Congruent
- To Prove Corresponding sides or angles are \cong
- First Prove the two triangles are \cong.

4.8 Use Isosceles and Equilateral Triangles

- 2 Special triangles.
- 1. The Isosceles Triangle:
- If 2 sides $\Delta \cong$,
then base angles \cong.
- If Base angles \cong,
then 2 legs \cong.

BAIT \cong Base Angles of Isosceles Triangle \cong

- Equilateral Triangle:
- Corollary:

- If Triangle is equilateral, then it is equiangular.
- If Triangle is equiangular, then it is equilateral.

4.9 Perform Congruence Transformations

- Transformation: operation that moves a figure.
- 3 kinds:
- 1. translation (slide)
- 2. reflection (flip)
- 3. rotation (turn)
- 1. Translation: $(x, y) \rightarrow(x+a, y+b)$
- 2. Reflection:
- In the x-axis $(x, y) \rightarrow(x,-y)$
- In the y-axis $(x, y) \rightarrow(-x, y)$
- 3. Rotation:
- preserves the distance from the center (pivot point)
- Clockwise/ counterclockwise
- Angle of rotation given

