Honors Algebra 2 Exam Review Chapters 4-5-9-10

Chapter 4: Exponential and Logarithmic Functions

Know How to......

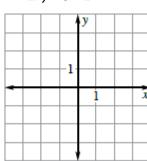
- Graph Exponential $(y = 2^x)$ and Log $(y = \log_3 x)$ Functions
 - o Asymptotes and Domain and Range
- Value of *e*
- Simplify exponents: know rules
- Interest Compounded continuously: $A = Pe^{rt}$
- Evaluate logs
- Expand logs/Condense logs
- Change of Base
- Solve Exponential Equations/ Solve Log Equations

Chapter 5: Rational Functions

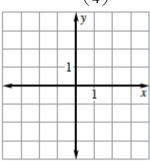
- Inverse Variation
- Graph: list Vertical Asymptote, Horizontal Asymptote
- Add, Subtract, Multiply, Divide Fractions
- Solve equations with fractions
- Determine if function is odd or even

Chapter 9: Trigonometric Functions

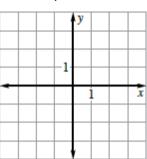
- Evaluate 6 trig functions
- Use inverse function to solve angles
- Solve triangles using trig; Law of Sines and Cosines


•

Chapter 10: Trig Graphs, Identities, and Equations


- Graph sine and cosine functions
- Simplify with Identities: know Pythagorean Identities
 - Know tangent ratio and $sin^2x + cos^2x = 1$
- Solve trig equations over $0 < x < 2\pi$
- Use sum formulas

Chapter 4: Graph the function. State the domain and range

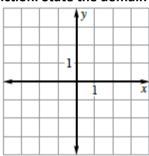


2.
$$y = \left(\frac{3}{4}\right)^x$$

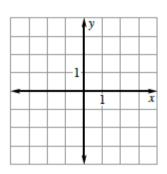
3.
$$y = e^x$$

Simplify the expression.

4.
$$4e^3 \cdot e^5$$
 5. $(-4e^{2x})^3$


5.
$$(-4e^{2x})^3$$

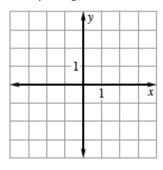
$$6.\frac{e^{5x}}{4e^2}$$


7.
$$\frac{9e^{6x}}{3e^{4x}}$$

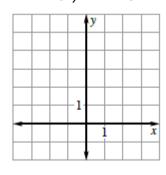
Graph the function. State the domain and range.

8.
$$y = 3e^x$$

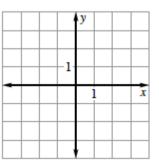
9.
$$y = 2e^{-4x}$$



10. You deposit \$3000 in an account that pays 5% annual interest compounded continuously. What is the balance after 2 years?


Evaluate the logarithm without using a calculator.

Graph the function. State the domain and range.


15.
$$y = \log_5 x$$

16.
$$y = \ln x + 3$$

17.
$$y = log(x + 1) - 2$$

Expand the expression.

19. In
$$4x^2y^5$$

Condense the expression.

Use the change-of-base formula to evaluate the logarithm.

Solve the equation.

24.
$$3^{x+1} = 27^{x+3}$$

25.
$$e^x = 5$$

26.
$$2^{3x} + 9 = 25$$

27.
$$4^{x+1} - 7 = 14$$

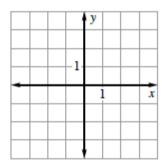
28.
$$\log_6 (5x + 8) = \log_6 (13x)$$

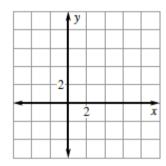
29. In
$$(4x - 2) = In(8x)$$

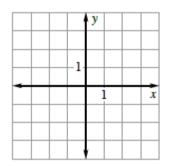
31.
$$\log_3(x+7)=3$$

Chapter 5: The variables x and y vary inversely. Use the given values to write an equation relating x and y. Then, find y when x = -2.

32.
$$x = 7$$
, $y = 2$


33.
$$x = 3$$
, $y = -8$


Graph the function.


34.
$$y = \frac{5}{4x}$$

35.
$$y = \frac{5}{x-3} + 1$$

36.
$$y = \frac{3x}{4x+1}$$

Perform the indicated operation and simplify.

37.
$$\frac{x^2 - 2x - 15}{x^2 + x - 12} \cdot \frac{2x^2 - 6x}{x^3 + 3x^2}$$

38.
$$\frac{x^2 - 10x + 21}{x^2 - 4} \cdot \frac{x - 2}{x - 7}$$

38.
$$\frac{x^2 - 10x + 21}{x^2 - 4} \cdot \frac{x - 2}{x - 7}$$
 39. $\frac{x^2 + 8x + 12}{x^2 - 4} \div \frac{x^2 + 10x + 24}{x^2 + x - 6}$

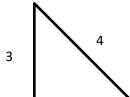
Perform the indicated operation and simplify.

40.
$$\frac{1}{x+3} + \frac{1}{x-3}$$

41.
$$\frac{4}{x-4} - \frac{3}{x+2}$$

42.
$$\frac{5x+4}{x^2-64} + \frac{3}{x-8}$$

Solve the equation.


43.
$$\frac{x-3}{x-2} = \frac{9}{x+6}$$

44.
$$\frac{x-6}{x-4} - \frac{3x-2}{x-4} = 4$$

45.
$$\frac{3x+9}{x^2-9} = \frac{2x+7}{x-3}$$

Chapter 9: Evaluate the six trig functions of angle θ .

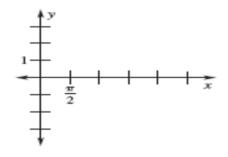
46.

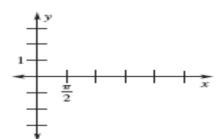
47. Sin
$$\theta = \frac{6}{11}$$

48. Solve $right \Delta ABC$, if B = 23° and a = 12.

49. Solve if $\cos \theta = .23$ and $90 < \theta < 180$

50. Solve
$$\sin^{-1} \frac{\sqrt{2}}{2}$$


51. Solve
$$\triangle ABC$$
 if A = 107°, B = 25° and b = 15


Chapter 10: Trig Graphs, Identities, and Equations

Graph the Functions. Label the x-axis.

53.
$$y = 2 \sin 4x$$

54.
$$y = 3 \cos \pi x$$

Simplify the Expression.

55.
$$\frac{\cos(\theta)}{\cot(\theta)}$$

$$56. \cos^2 x + \sin^2 x + \tan^2 x$$

Solve the equation in the interval $0 < x < 2\pi$

57.
$$3 \tan^2 x = 1$$

Find the exact value if: $\sin (a - b) = \sin a \cos b - \cos a \sin b$

58. sin 15°