Chapter 3: Powers, Roots, and Radicals

3.1 nth Roots and Rational Exponents

- Exponent Form: $a^{m / n} \quad \mathrm{Ex}: 2^{3 / 4}$
- Root Form: $\sqrt[n]{a^{m}}$

Ex: $\sqrt[4]{2^{3}}$

3.2 Properties of Rational Exponents

- Exponent Form: $a^{m / n}$
- When Simplifying: Use properties of Exponents - Bases must be the same
$\mathrm{EX}: x^{1 / 3} \cdot x^{1 / 3}=x^{2 / 3}$ Add exponents

$$
\left(x^{1 / 3}\right)^{2}=x^{2 / 3} \quad \text { Multiply exponents }
$$

$$
\frac{x^{2 / 3}}{x^{1 / 3}}=x^{1 / 3}
$$

Subtract exponents
$\sqrt[3]{x^{6}}=x^{2} \quad$ Divide exponents

- Root Form: $\sqrt[n]{a^{m}}$
- Can Multiply and Divide with same index
- Can add and subtract as like terms
- To Simplify: no perfect roots and
- no roots in denominator
- Ex: $\sqrt[3]{2} \cdot \sqrt[3]{7}=\sqrt[3]{14}$
- Ex: $\frac{\sqrt[3]{10}}{\sqrt[3]{2}}=\sqrt[3]{\frac{10}{2}}$
- Ex: $5 \sqrt[3]{2}+7 \sqrt[3]{2}=12 \sqrt[3]{2}$
- EX: $\sqrt[3]{16}=\sqrt[3]{8 x 2}=2 \sqrt[3]{2}$

3.3 Power Functions and Function Operations

- Functions:
- Can Add, Subtract, Multiply, or Divide 2 functions $f(x)=x+1 \quad g(x)=2 x+3$
$f(x)+g(x)$
$f(x)-g(x)$
$f(x) \cdot g(x)$
$f(x) / g(x)$
- Compositions: $\mathrm{f}(\mathrm{g}(\mathrm{x}))$ and $\mathrm{g}(\mathrm{f}(\mathrm{x}))$
- Putting one function into another

3.4 Inverse Functions

- To find Inverse:
- switch x and y, solve for y Ex: $y=2 x-1$

$$
\begin{aligned}
& x=2 y-1 \\
& y=\frac{x+1}{2}
\end{aligned}
$$

- To determine if 2 equations are inverses:

$$
-f(g(x))=x \text { AND } g(f(x))=x
$$

- Graph:
- Equation and Inverse are reflected about $y=x$.
- Sometimes Inverse of function NOT function
- Vertical Line Test: determines if an equation is a function
- Horizontal Line Test: determines if its Inverse is a function

3.5 Graphing Square Root and Cube Root Functions

- Square Root Functions:
$-y=\sqrt{x}$
- Domain: $x \geq 0$
- Range: $\mathrm{y} \geq 0$
- Shifts: $y=a \sqrt{x-h}+k$
$-h$ units horizontally
$-k$ units vertically

- Cube Root Functions:
- $\mathrm{y}=\sqrt[3]{x}$
- Domain: all real
- Range: all real
- Shifts: $\mathrm{y}=\mathrm{a} \sqrt[3]{x-h}+\mathrm{k}$

$-h$ units horizontally
- k units vertically

3.6 Solving Radical Equations

- Eliminate radicals and rational exponents
- Raise each side of the equation to the same power
- Check for extra solutions that don't work.

