Exam Review Algebra II Chapters 1 – 2

1st Semester

Exam

- 43 Questions; 100 points
- #1-15 Short Answer
- #16-28 Chapter 1
- #29-43 Chapter 2
- Bring a calculator. No iPads
- I will have scrap

Chapter 1: Quadratic Functions

• Terms:

- A Quadratic Equation: x^2
- Graph: Parabola
- Forms: Standard, Vertex, Intercept
- Ways to solve a Quadratic: Factoring,
 Completing the Square, Quadratic Formula
- Minimum or maximum point: Vertex
- Quadratic Formula: $x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$
- Conjugate:
- Discriminant: $b^2 4ac$

Standard Form
$$y = ax^2 + bx + c$$

- To Graph:
 - 1. Find Vertex (x = $\frac{-b}{2a}$, y = plug in)
 - 2. Make x/y chart and find 2 points

- Ex:
$$y = x^2 + 4x - 3$$

- Vertex: $x = \frac{-4}{2(1)} = -2$ $y = (-2)^2 + 4(-2) - 3 = -7$
(-2,-7)

Vertex Form $y = a(x - h)^2 + k$

- To Graph:
 - Find Vertex (h,k)
 - Make x/y chart and find 2 points

$$- Ex: y = 3(x - 2)^{2} - 5$$

- Vertex (2,-5)

Intercept Form
$$y = (x - p)(x - q)$$

- To Graph:
 - 1. Plot x-intercepts p and q. (2 of them)
 - 2. Find vertex. (x = $\frac{p+q}{2}$, y = plug in)

- Ex:
$$y = (x - 4)(x + 6)$$

- Vertex $x = \frac{4+-6}{2} = -1$ $y = (-1 - 4)(-1 + 6) = -25$
- (-1, -25)

To Solve Quadratic Equations

- 1. By Factoring: $y = x^2 + 5x + 4$
 - (x + 4)(x + 1) = 0 x = -4, -1
- 2. By Square Root: $(x+3)^2 = 24$ • $x + 3 = \sqrt{24}$ $x = \pm 2\sqrt{6} - 3$
 - Complete Square $y = x^2 + 6x 7$
 - $x^2 + 6x + 9 = 7 + 9$ $(x + 3)^2 = 16$

• By Quadratic Formula: $y = x^2 + 5x + 3$

•
$$\mathbf{x} = \frac{-5 \pm \sqrt{5^2 - 4(1)(3)}}{2(1)} = \frac{-5 \pm \sqrt{13}}{2}$$

- Complex Numbers
 - Simplify
 - Add, Subtract like terms
 - Multiply: $i^2 = -1$
 - Rationalize the denominator: use conjugate

Ch. 2 Polynomials and Polynomial Functions

Terms:

Polynomial: degree 2 (quadratic), degree 3(cubic)

If (x - k) is a factor then f(k) = 0

End Behavior: even same, odd different

Degree = number of solutions

Imaginary and Irrational come in pairs

Rules of Exponents

• 1.
$$x^3 \cdot x^5 = x^8$$

- 2. $(x^3)^2 = x^6$
- 3. $\frac{x^8}{x^5} = x^3$
- 4. $x^{-2} = \frac{1}{x^2}$
- 5. $x^0 = 1$

- (add powers) (mult powers)
 - (subt powers)
 - (no neg powers)

Factor

• Cubes: $x^3 + 8 = (x + 2)(x^2 - 2x + 4)$

• 4 terms: Grouping $2x^3 + 4x^2 + 7x + 14$ $(2x^3 + 4x^2) + (7x + 14)$ $2x^2(x + 2) + 7(x + 2)$ $(2x^2 + 7)(x + 2)$

Synthetic Division

• $(6x^3 + 5x^2 - 7x + 1) \div (x - 4)$

• 4 | 6 5 -7 1

Solve Polynomials

- 1. Use synthetic division with first solution
- 2. Factor answer
- 3. Highest Power indicates the number of solutions; real and/or imaginary

Write Equation Given Factors

- Put each solution into factors
- Multiply the factors with FOIL

Graph Polynomials

- Know End Behavior
- Make x/y chart
- If in factored form: Plot x-intercepts first