## Chapter 2

## Polynomials and Polynomial <br> Functions

### 2.1 Using Exponents

- Properties; Rules
- 1. $x^{5} \cdot x^{3}=x^{8} \quad$ (add powers)
- 2. $\left(x^{5}\right)^{3}=x^{15} \quad$ (multiply powers)
-3. $\left(2 x^{5}\right)^{3}=2^{3} \cdot x^{15}$ (distribute)
-4. $a^{0}=1$
-5. $a^{-1}=\frac{1}{a}$
-6. $\left(\frac{x^{5}}{x^{3}}\right)=x^{2} \quad$ (subtract powers)
- 7. $\left(\frac{2 x^{5}}{y^{3}}\right)^{3}=\frac{2^{3} x^{15}}{y^{9}}$ (distribute)


### 2.2 Evaluating and Graphing Polynomial Functions

- Polynomial Function:
- Standard Form (highest to lowest)
- Exponents (whole numbers)
- Leading coefficient (real)
- Types; linear, quadratic, cubic, quartic
- Evaluate:
- Plug in
- Synthetic Substitution
- Graph:
- End Behavior: n is odd (opposite) n is even ( same)
$-x \mid y$ chart


### 2.3 Operations on Polynomials

- Adding (Like Terms)
- Subtracting (Like Terms)
- Multiplying (Distribute..then combine like terms)


### 2.4 Factoring and Solving Polynomial <br> Equations

## Factoring:

- Types:
- 1. GCF
- 2. Regular FOIL
- 3. Difference of Squares: $x^{2}-y^{2}=(x+y)(x-y)$
-4 . Perfect Square: $x^{2}+2 x y+y^{2}=(x+y)^{2}$
-5 . Sum or Difference of Cubes: $x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$
-6. Grouping: 4 terms
- To Solve
- 1. standard form = 0
- 2. Factor 1.GCF 2.FOIL
-3 . Set each factor $=0$


### 2.5 The Remainder and Factor Theorems

 quotient $\mathrm{q}(\mathrm{x})+$ remainder $\mathrm{r}(\mathrm{x})$- $\mathrm{d}(\mathrm{x})$-divisor $\sqrt{f(x) \text { polynomial }}$
- 2 kinds of division: (why: to find factors)
- Long
- Synthetic
- Remainder Theorem:
- If polynomial $f(x)$ is divided by $(x-k)$,
- Then $f(k)=r$ (remainder)
- Factor Theorem:
- If polynomial $f(x)$ has a factor $(x-k)$,
- Then $f(k)=0$


## Asked to do 2 Things

- To Factor: factors: break polynomial into factors - May have to use synthetic division to find factors
- ( ) ( ) ( )
- To Solve: solutions: must be factored to solve
- Find $\mathrm{x}=$, , ,
- Find Roots
- Find Zeros
- Find x-intercepts


### 2.6 Finding Rational Zeros

- To start to find factors: Factor to Solve
- List all POSSIBLE rational zeros
- Factors of last number (constant)
- Factors of first number (leading)
- Test by using synthetic division $r=0$
- Ex: Solution: 6
$-2$
$\frac{3}{2}$
Factor: $(x-6) \quad(x+2) \quad(2 x-3)$


### 2.7 Fundamental Theorem of Algebra

- Every polynomial has a solution; real or


## complex

- The degree of a polynomial indicates the number of solutions in the complex numbers
- (real and imaginary)
- Repeated solutions,
- Imaginary and irrational come in conjugates (pairs)


### 2.8 Graphs of Polynomials

- Sketch graphs
- Know end behavior
- Know x and y intercepts
- Know curves; turning points
- maximum and minimum
- To find max or min values use graph


## Summary

- Zero: k
- Factor: $(x-k)$
- Solution: $k$ to $f(x)=0$
- X-intercept: (k,0)

Ex: 5
Ex: $(x-5)$
Ex: 5
Ex: $(5,0)$

