Chapter 3: Powers, Roots, and Radicals

3.1 nth Roots and Rational Exponents

• Exponent Form: $a^{m/n}$

• Root Form: $\sqrt[n]{a^m}$

3.2 Properties of Rational Exponents

• Exponent Form: $a^{m/n}$

- When Simplifying: Use properties of Exponents
 - Bases must be the same
 - Don't leave fraction power in denominator

• Root Form: $\sqrt[n]{a^m}$

- Can Multiply and Divide with same index
- Can add and subtract as like terms
- To Simplify: no perfect roots and
 - no roots in denominator

•
$$\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$$

$$\bullet \quad \frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$$

3.3 Power Functions and Function Operations

- Functions:
 - Can Add, Subtract, Multiply, or Divide 2 functions

- Domain: values for x
 - Restrictions: Even Roots \sqrt{x} x must be ≥ 0
 - Fractions $\frac{a}{b}$ b can never = 0

Compositions: f(g(x)) and g(f(x))

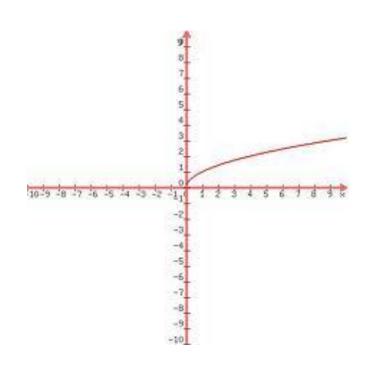
Putting one function into another

3.4 Inverse Functions

- To find Inverse:
 - switch x and y, solve for y
 - Watch for restrictions

- To determine if 2 equations are inverses:
 - -f(g(x)) = x AND g(f(x)) = x

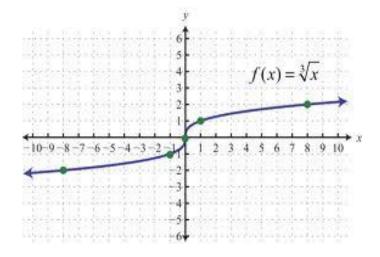
Graph:


- Equation and Inverse are reflected about y = x.
- Sometimes Inverse of function NOT function
 - Vertical Line Test: determines if an equation is a function
 - Horizontal Line Test: determines if its Inverse is a function

3.5 Graphing Square Root and Cube Root Functions

• Square Root Functions: p. 431

$$-y = \sqrt{x}$$


- Domain: x > 0
- Range: $y \ge 0$
- Shifts: $y = a \sqrt{x h} + k$
- h units horizontally
- k units vertically

Cube Root Functions:

•
$$y = \sqrt[3]{x}$$

- Domain: all real
- Range: all real
- Shifts: $y = a\sqrt[3]{x h} + k$
 - h units horizontally
 - k units vertically

3.6 Solving Radical Equations

- Eliminate radicals and rational exponents
- Raise each side of the equation to the same power
- Check for extra solutions that don't work.