Algebra 1 Exam 2 Review Chapters 4 and 5 and 6

Exam

- 50 questions; 2 points each
- \#1-13 Matching
- \#14-23 Chapter 4
- \#24-46 Chapter 5
- \#47-50 Chapter 6
- Bring pencils, no calculators
- I will have scrap if needed

Matching

- \#1-13 Terms
- Standard Form: Ax + By = C
- Slope-Intercept Form: $y=m x+b$
- Point - Slope Form: $y-y_{1}=m\left(x-x_{1}\right)$
- Parallel Lines: same slope
- Perpendicular Lines: negative reciprocals
- Absolute Value: 2 answers
- Graph Inequalities: shade

Chapter 4

Writing Linear Equations

- Write Equation: given \mathbf{m} and \mathbf{b}

$$
m=2, \quad b=4 \quad \text { Answer: } y=2 x+4
$$

- Write Equation: given m and point (x, y)
$(1,2), m=3 \quad y-2=3(x-1)$
Answer: $y=3 x+5$
- Write Equation: given 2 points
$(1,2)$ and $(3,4)$
First find slope: $m=\frac{4-2}{3-1}=1$
Then: $y-2=1(x-1)$
Answer: $y=1 x+1$

Parallel and Perpendicular

- Parallel to $y=2 x-1$ through $(4,5)$
- $m=2 y-5=2(x-4) \rightarrow y=2 x-3$
- Perpendicular: $y=2 x-1$ through $(4,5)$
- $m=\frac{-1}{2} \quad y-5=\frac{-1}{2}(x-4) \rightarrow y=\frac{-1}{2} x+7$

Chapter 5: Solving and Graphing Linear Inequalities

To solve inequalities:

- 1. Distribute through parenthesis
- 2. Combine like terms
- 3. Add or subtract
- 4. Multiply or divide (*caution when negative; reverse)
- Ex: $2(x+3)-5<11$
$-\quad 2 x+6-5<11$
$-\quad 2 x+1<11$
$-\quad 2 x<10$
$-\quad x<5$

And/Or

- OR
- $2 x<10$ or $3 x>21$
- $x<5$ OR $x>7$
- AND
- $15<2 x+1<23$
- $14<2 x<22$
- $7<x<11$
- Graph is on number line

Absolute Value

- Three Types:

1. $|x+1|=6$ Solve: $x+1=6$ and $x+1=-6$

$$
x=5 \text { and } x=-7
$$

2. $|x+1|>6$ Solve: $x+1>6$ OR $x+1<-6$ $x>5$ OR $x<-7$
3. $|x+1|<6 \quad$ Solve: $-6<x+1<6$

$$
-7<x<5
$$

Graphing Inequalities

- 2 Types:
- 1. Slope form: pick out $m=b=$
- 2. Intercept Form: pick out $x=y=$
- Pick test point $(0,0)$ if works SHADE the point
- Otherwise shade other points
- Remember: solid or dashed

Chapter 6: Systems

- A system is 2 equations.
- The solution is (x, y)
- To Solve:
- Use Graphing (point where they cross)
- Use Substitution
- Use Elimination.
- Use Elimination with Multiplication first

