Chapter 1- Quadratics

Algebra 2

Chapter 1: Quadratic Functions and Factoring

Forms.

- 1. Standard Form: $y = ax^2 + bx + c$
- 2. Vertex Form: $y = a (x h)^2 + k$
- 3. Intercept Form: y = a(x p)(x q)
- The solutions (graph) form a Parabola
 The parent function is: y = x²
 Find Vertex and use x / y chart

Properties of Quadratics

- a > 0 opens up a < 0 opens down</p>
- -|a| > 1 narrower |a| < 1 wider
- Axis (line) of Symmetry x = (x of vertex)
- Vertex (VIP):
- y-intercept: c (0,c)
- Maximum Value: graph opens down
- Minimum Value: graph opens up
 - The y value of the vertex

1.1-1.2 Graphing

- To Graph:
- **1.** Standard Form: $y = ax^2 + bx + c$ - Find Vertex $\frac{-b}{2a'}$
 - 2. Vertex Form: $y = a (x h)^2 + k$ Find Vertex (h,k)
- 3. Intercept Form: y = a(x p)(x q)Find Vertex $\frac{p+q}{2}$

1.3-1.4 Solve Quadratic Equations by Factoring

- To Solve a Quadratic Equation:
 - -1. Standard Form = 0
 - 2. Factor 1.GCF 2. FOIL
 - -3. Set each factor = 0
 - -4. Solve for x

Solutions are called.....

- Roots
- Zeros
- Intercepts
- x-intercepts

1.5 Solve Quadratics by Finding Square Root

- Square Root: radical = $\sqrt{2}$ 2=radicand
- Simplify;
 - 1. Take out any factors that are perfect squares $-\sqrt{24} = 2\sqrt{6}$
 - -2. Multiply: $\sqrt{a} \cdot \sqrt{b} = \sqrt{ab}$

• A. Add and Subtract like: $3\sqrt{2} + 4\sqrt{2} = 7\sqrt{2}$

$$-3. \sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$
 NO radical in denominator so.....
$$-\frac{\sqrt{a}}{\sqrt{b}} \cdot \frac{\sqrt{b}}{\sqrt{b}} = \frac{\sqrt{ab}}{b}$$

• To Solve:

- Quantity on one side()² = number on other
- Square root both sides
- Remember 2 answers ±

1.6 Complex Numbers

- Complex Numbers made up of real and imaginary parts a + bi
- Pure Imaginary: *bi* Add, subtract, multiply

$$i = \sqrt{-1} = i$$
$$i^2 = -1$$

- Can't have *i* in denominator
 - Rationalize the denominator: multiply by conjugate

$$-2+3i$$
 conjugate = $-2-3i$

• Absolute Value: distance from origin

$$|a+bi| = \sqrt{a^2 + b^2}$$

1.7 Completing the Square

- To **Solve** Quadratic Equations:
 - -1. Factor () () = 0
 - -2. Square Roots ()² = 8
 - 3. Complete the Square (then use Square Roots)

• To complete the square:

$$-1$$
. make $ax^2 + bx = c$

-2. a = 1

- 3. take
$$\frac{1}{2}$$
 (b) then square it

- 4. add it to both sides
- 5. factor
- 6. solve
- Use to put equation in vertex form

1.8 The Quadratic Formula and the Discriminant

- To **Solve** Quadratic Equations
- 1. Factor
- 2. Square Root (Complete Square)
- 3. Quadratic Formula:

$$\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$

• **Discriminant**: determines what kind of answers

- If $b^2 4ac > 0$ 2 real solutions
 - $b^2 4ac = 0$ 1 real solution
 - b² 4ac < 0 2 imaginary solution

1.9 Graphing and Solving Quadratic Inequalities

- To **Graph**: $ax^2 + bx + c < (>) 0$
 - Graph Vertex
 - Pick points x/y chart
 - Solid or dashed
 - Test point
 - Shade

- To Solve a Quadratic Inequality
 - Set = 0
 - Solve for x
 - Factor
 - Quadratic Formula
 - Test Intervals
 - Write Solution as Inequality

Chapter 1 Test

- Graph: 3 forms
 - Find Vertex
 - Find x-intercepts
 - Find y-intercept
 - Find axis of symmetry
 - Know when to shade
 - **Change Forms**
 - 2 story problems

Solve:

- 1. Factor
- 2. Square Roots
 - Complete Square
- 3. Quad Formula