Exam Review Algebra II Chapters 1 – 3

1st Semester

Exam

- 50 Questions; 100 points
- #1-15 Short Answer
- #16-25 Chapter 1
- #26-39 Chapter 2
- #40-50 Chapter 3
- Bring a calculator. No iPads
- I will have scrap

Chapter 1: Quadratic Functions

Terms:

- Graph: Parabola
- Forms: Standard, Vertex, Intercept
- Ways to solve a Quadratic: Factoring,
 Completing the Square, Quadratic Formula
- Minimum or maximum point: Vertex
- Quadratic Formula:
- Conjugate:
- Discriminant: $b^2 4ac$

Standard Form $y = ax^2 + bx + c$

To Graph:

- 1. Find Vertex
$$(x = \frac{-b}{2a}, y = plug in)$$

2. Make x/y chart and find 2 points

- Ex:
$$y = x^2 + 4x - 3$$

- Vertex: $x = \frac{-4}{2(1)} = -2$ $y = (-2)^2 + 4(-2) - 3 = -7$
 $(-2,-7)$

Vertex Form

$$y = a(x - h)^2 + k$$

- To Graph:
 - Find Vertex (h,k)
 - Make x/y chart and find 2 points

- Ex: $y = 3(x-2)^2 5$
- Vertex (2,-5)

Intercept Form y = (x - p)(x - q)

To Graph:

- 1. Plot x-intercepts p and q. (2 of them)
- -2. Find vertex. (x = $\frac{p+q}{2}$, y = plug in)

$$- Ex: y = (x - 4)(x + 6)$$

- Vertex
$$x = \frac{4+-6}{2} = -1$$
 $y = (-1-4)(-1+6) = -25$

$$(-1, -25)$$

To Solve Quadratic Equations

• 1. By Factoring: $y = x^2 + 5x + 4$

•
$$(x + 4)(x + 1) = 0$$

$$x = -4, -1$$

• 2. By Square Root: $(x+3)^2 = 24$

•
$$x + 3 = \sqrt{24}$$

$$x = \pm 2\sqrt{6} - 3$$

- Complete Square $y = x^2 + 6x - 7$

•
$$x^2 + 6x + 9 = 7 + 9$$

$$(x + 3)^2 = 16$$

• By Quadratic Formula: $y = x^2 + 5x + 3$

•
$$\chi = \frac{-5 \pm \sqrt{5^2 - 4(1)(3)}}{2(1)} = \frac{-5 \pm \sqrt{13}}{2}$$

Complex Numbers

- Simplify
- Add, Subtract like terms
- Multiply: $i^2 = -1$
- Rationalize the denominator: use conjugate

Ch. 2 Polynomials and Polynomial Functions

Terms:

Polynomial: degree 2 (quadratic), degree 3(cubic)

If (x - k) is a factor then f(k) = 0

End Behavior: even same, odd different

Degree = number of solutions

Imaginary and Irrational come in pairs

Rules of Exponents

• 1.
$$x^3 \cdot x^5 = x^8$$

• 2.
$$(x^3)^2 = x^6$$

• 3.
$$\frac{x^8}{x^5} = x^3$$

• 4.
$$x^{-2} = \frac{1}{x^2}$$

(no neg powers)

• 5.
$$x^0 = 1$$

Factor

• Cubes: $x^3 + 8 = (x + 2)(x^2 - 2x + 4)$

• 4 terms: Grouping $2x^3 + 4x^2 + 7x + 14$ $(2x^3 + 4x^2) + (7x + 14)$ $2x^2(x + 2) + 7(x + 2)$ $(2x^2 + 7)(x + 2)$

Synthetic Division

•
$$(6x^3 + 5x^2 - 7x + 1) \div (x - 4)$$

• 4 | 6 5 -7 1

Solve Polynomials

- 1. Use synthetic division with first solution
- 2. Factor answer
- 3. Highest Power indicates the number of solutions; real and/or imaginary

Write Equation Given Factors

- Put each solution into factors
- Multiply the factors with FOIL

• Ex Zeros: 1, -2, 3 (x-1)(x+2)(x-3)then multiply

Graph Polynomials

- Know End Behavior
- Make x/y chart

Chapter 3: Rational Exponents and Radical Functions

- Terms:
- Function:
- Inverse:
- Domain: x values
- Range: y-values

- Evaluate: cubes and rational powers
- Simplify: use exponents,
 - know rules of exponents
- Functions: add, subtract, f(g(x))
- Graph: cube root, square root
- Solve: roots and rational powers