## Exam Review Algebra II Chapters 1-3

## 1st Semester

## Exam

- 50 Questions; 100 points
- \#1-15 Short Answer
- \#16-25 Chapter 1
- \#26-39 Chapter 2
- \#40-50 Chapter 3
- Bring a calculator. No iPads
- I will have scrap


## Chapter 1: Quadratic Functions

- Terms:
- Graph: Parabola
- Forms: Standard, Vertex, Intercept
- Ways to solve a Quadratic: Factoring, Completing the Square, Quadratic Formula
- Minimum or maximum point: Vertex
- Quadratic Formula:
- Conjugate:
- Discriminant: $b^{2}-4 a c$


## Standard Form $y=a x^{2}+b x+c$

- To Graph:
- 1. Find Vertex $\quad\left(x=\frac{-b}{2 a}, y=\right.$ plug in $)$
- 2. Make $x / y$ chart and find 2 points
$-E x: y=x^{2}+4 x-3$
- Vertex: $\quad x=\frac{-4}{2(1)}=-2 \quad y=(-2)^{2}+4(-2)-3=-7$ $(-2,-7)$

$$
\begin{gathered}
\text { Vertex Form } \\
y=a(x-h)^{2}+k
\end{gathered}
$$

- To Graph:
- Find Vertex (h,k)
- Make $x / y$ chart and find 2 points
- Ex: $\quad y=3(x-2)^{2}-5$
- Vertex $(2,-5)$

$$
\begin{aligned}
& \text { Intercept Form } \\
& y=(x-p)(x-q)
\end{aligned}
$$

- To Graph:
- 1. Plot $x$-intercepts $p$ and $q$. (2 of them)
-2. Find vertex. ( $\mathrm{x}=\frac{p+q}{2}, \mathrm{y}=$ plug in)
$-E x: y=(x-4)(x+6)$
- Vertex $\quad x=\frac{4+-6}{2}=-1 \quad y=(-1-4)(-1+6)=-25$
- $(-1,-25)$


## To Solve Quadratic Equations

- 1. By Factoring: $y=x^{2}+5 x+4$

$$
\text { - }(x+4)(x+1)=0 \quad x=-4,-1
$$

- 2. By Square Root: $(x+3)^{2}=24$
- $x+3=\sqrt{24}$
$x= \pm 2 \sqrt{6}-3$
- Complete Square $y=x^{2}+6 x-7$
- $x^{2}+6 x+9=7+9$
$(x+3)^{2}=16$
- By Quadratic Formula: $y=x^{2}+5 x+3$
- $x=\frac{-5 \pm \sqrt{5^{2}-4(1)(3)}}{2(1)}=\frac{-5 \pm \sqrt{13}}{2}$
- Complex Numbers
- Simplify
- Add, Subtract - like terms
- Multiply: $i^{2}=-1$
- Rationalize the denominator: use conjugate


## Ch. 2 Polynomials and Polynomial Functions

Terms:
Polynomial: degree 2 (quadratic), degree 3(cubic)
If $(x-k)$ is a factor then $f(k)=0$
End Behavior: even same, odd different
Degree = number of solutions
Imaginary and Irrational come in pairs

## Rules of Exponents

- 1. $x^{3} \cdot x^{5}=x^{8}$
- 2. $\left(x^{3}\right)^{2}=x^{6}$
- 3. $\frac{x^{8}}{x^{5}}=x^{3}$
- 4. $x^{-2}=\frac{1}{x^{2}}$
- 5. $x^{0}=1$
(add powers)
(mult powers)
(subt powers)
(no neg powers)


## Factor

- Cubes: $x^{3}+8=(x+2)\left(x^{2}-2 x+4\right)$
- 4 terms: Grouping $2 x^{3}+4 x^{2}+7 x+14$

$$
\begin{aligned}
& \left(2 x^{3}+4 x^{2}\right)+(7 \mathrm{x}+14) \\
& 2 x^{2}(\mathrm{x}+2)+7(\mathrm{x}+2) \\
& \left(2 x^{2}+7\right)(\mathrm{x}+2)
\end{aligned}
$$

## Synthetic Division

- $\left(6 x^{3}+5 x^{2}-7 x+1\right) \div(x-4)$
- 4 6 5 -7 1


## Solve Polynomials

- 1. Use synthetic division with first solution
- 2. Factor answer
- 3. Highest Power indicates the number of solutions; real and/or imaginary


## Write Equation Given Factors

- Put each solution into factors
- Multiply the factors with FOIL
- Ex Zeros: 1, - 2, 3

$$
(x-1)(x+2)(x-3)
$$

then multiply

## Graph Polynomials

- Know End Behavior
- Make x/y chart


## Chapter 3: Rational Exponents and Radical Functions

- Terms:
- Function:
- Inverse:
- Domain: x values
- Range: y-values
- Evaluate: cubes and rational powers
- Simplify: use exponents,
- know rules of exponents
- Functions: add, subtract, $\mathrm{f}(\mathrm{g}(\mathrm{x}))$
- Graph: cube root, square root
- Solve: roots and rational powers

