Exponential and Logarithmic Functions

Chapter 4

4.1 Exponential Growth

- Exponential Function: $\mathrm{f}(\mathrm{x})=a \cdot b^{x}$

- Asymptote: x-axis; y = 0
- Domain: all real
- Range: $y \geq 0$
- Growth: $a>0, b>1$
- Shift: $\mathrm{y}=a b^{x-h}+k$
- Increase at a fixed percent: $\mathrm{y}=a(1+r)^{t}$
- Growth factor: $1+r$
- Compound Interest: $\quad \mathrm{A}=P\left(1+\frac{r}{n}\right)^{n t}$
- P Initial Principal
- r rate(decimal)
- n times per year
- t years

4.2 Exponential Decay

- Exponential Decay: $f(x)=a \cdot b^{x}$

Decay: $a>0,0<b<1$
Asymptote: y = 0
Domain: all real
Range: y > 0
Shift: $\mathrm{y}=a b^{x-h}+k$

- Quantity decreases by fixed percent:
- (Loses value each year)
- $\mathrm{y}=a(1-r)^{t}$
- Decay factor: 1 -r

4.3 The number e

- In growth function: As $n \rightarrow \infty,\left(1+\frac{1}{n}\right)^{n}=e$
- $e=2.71828$
- Natural base e
- Use as a base (rules apply)
- $\mathrm{f}(\mathrm{x})=a e^{r x} \quad f(x)=e^{x}$ or $f(x)=e^{-x}$
- Exponential Growth: $a>0, r>0$
- Exponential Decay: a>0, r<0
- Continuously Compounded Interest:

$$
A=P e^{r t}
$$

4.4 Logarithmic Functions

- Invented to "solve for exponent"
- A logarithm is the exponent
- The answer to the log is an exponent
- Logarithmic Form: $\log _{b} y=x$
- Exponential Form: $b^{x}=y$
- 2 special logarithms:
$-\log _{b} 1=0$ because $b^{0}=1$
$-\log _{b} b=1$ because $b^{1}=b$
- Common logarithm: base $10=\log x$
- Natural logarithm: base $e=\ln x$
- Inverses: exponential function and log function
- "undo each other"
- $\log _{b} b^{x}=\mathrm{x} \quad b^{\log _{b} x}=\mathrm{x}$
- To find inverse: switch x and y
- Solve for y (switch form)
- To Graph: $\mathrm{y}=\log _{b}(x-h)+\mathrm{k}$

Vertical Asymptote: line $x=h$
Domain: $\mathrm{x}>\mathrm{h}$
Range: all real numbers
$b>1$ up to right; $0<b<1$ down to right Use 2 special logarithms

4.5 Properties of Logarithms

- Product: $\log _{b} u v=\log _{b} u+\log _{b} v$
- Quotient: $\log _{b} \frac{u}{v}=\log _{b} u-\log _{b} v$
- Power: $\log _{b} u^{n}=\mathrm{n} \log _{b} u$
- Change of Base: $\log _{c} u=\frac{\log u}{\log c}$ (allows calculator)

4.6 Solving Exponential and Logarithmic Equations

- To Solve Exponential Functions: $y=b^{x}$
-Use same bases
OR
-Take log of each side
- Use Properties if needed
-Check solutions
- To Solve Logarithm Functions: $y=\log _{b} x$
- Cancel out same log

OR

- Change to exponential form
- Check extra solutions

4.7 Writing Exponential and Power Equations

- To write exponential function: $\mathrm{y}=a \cdot b^{x}$
- Given two points:
- write 2 equations and use substitution
- Solve for a and b
- To write power function: $\mathrm{y}=a \cdot x^{b}$
- Given two points:
- write 2 equations and use substitution
- Solve for a and b

