Exponential and Logarithmic Functions

Chapter 4

4.1 Exponential Growth

• Exponential Function: $f(x) = a \cdot b^x$

- Asymptote: x-axis; y = 0
 - Domain: all real
 - Range: y<u>></u>0
 - Growth: a>0, b>1
 - Shift: $y = ab^{x-h} + k$

• Increase at a fixed percent: $y = a(1 + r)^{t}$ - Growth factor: 1 + r

- Compound Interest: $A = P(1 + \frac{r}{n})^{nt}$
- P Initial Principal
- r rate(decimal)
- n times per year
- t years

4.2 Exponential Decay

• Exponential Decay: $f(x) = a \cdot b^x$

Decay: a > 0, 0 < b < 1

Asymptote: y = 0

Domain: all real

Range: y > 0

Shift: $y = ab^{x-h} + k$

- Quantity decreases by fixed percent:
 - (Loses value each year)

•
$$y = a(1-r)^t$$

• Decay factor: 1 − r

4.3 The number e

- In growth function: As $n \to \infty$, $(1 + \frac{1}{n})^n = e$
- *e* = 2.71828
- Natural base e
- Use as a base (rules apply)
- $f(x) = ae^{rx}$ $f(x) = e^x$ or $f(x) = e^{-x}$
 - Exponential Growth: a>0, r>0
 - Exponential Decay: a>0, r<0

Continuously Compounded Interest:

$$A = Pe^{rt}$$

4.4 Logarithmic Functions

- Invented to "solve for exponent"
- A logarithm is the exponent
 - The answer to the log is an exponent
- Logarithmic Form: $\log_b y = x$

• Exponential Form: $b^x = y$

2 special logarithms:

- $-\log_b 1 = 0$ because $b^0 = 1$
- $-\log_b b = 1$ because $b^1 = b$

- Common logarithm: base $10 = \log x$
- Natural logarithm: base $e = \ln x$

- Inverses: exponential function and log function
 - "undo each other"
- $\log_b b^x = x$ $b^{\log_b x} = x$

- To find inverse: switch x and y
 - Solve for y (switch form)

• To Graph: $y = \log_b(x - h) + k$

Vertical Asymptote: line x = h

Domain: x > h

Range: all real numbers

b > 1 up to right; 0<b<1 down to right

Use 2 special logarithms

4.5 Properties of Logarithms

• Product: $\log_b uv = \log_b u + \log_b v$

• Quotient: $\log_b \frac{u}{v} = \log_b u - \log_b v$

• Power: $\log_b u^n = n \log_b u$

• Change of Base: $\log_c u = \frac{\log u}{\log c}$ (allows calculator)

4.6 Solving Exponential and Logarithmic Equations

- To Solve Exponential Functions: $y = b^x$
 - -Use same bases

OR

- —Take log of each side
 - Use Properties if needed
- –Check solutions

- To Solve **Logarithm Functions**: $y = \log_b x$
- Cancel out same log
 OR
- Change to exponential form
- Check extra solutions

4.7 Writing Exponential and Power Equations

- To write **exponential function**: $y = a \cdot b^x$
 - Given two points:
 - write 2 equations and use substitution
 - Solve for a and b
- To write **power function**: $y = a \cdot x^b$
 - Given two points:
 - write 2 equations and use substitution
 - Solve for a and b