Chapter 3

Graphing Linear Equations and
 Functions

3.1 Plot Points in a Coordinate Plane

- Coordinate Plane

- Domain: x-values, inputs
- Range: y - values, outputs

3.2 Graph Linear Equations

- Linear Equation: $A x+B y=C$
- Solutions: (x, y) that make equation true
- Plug in x and y to see
- Solutions lie in a straight line: Graph
- To graph the solutions (line) make x y chart
- Pick 3 values for x and plug them in 3 times
- Solve equation for y (get y by itself) - Makes plug in easier
- Ex.) $10 x-2 y=6$
- -10x -10x

$$
\frac{-2 y}{-2}=\frac{6}{-2} \frac{-10 x}{-2}
$$

$$
y=-3+5 x
$$

Special Lines

- 1. Horizontal Line

$$
y=b \quad y=6
$$

- No x term
- Crosses y axis
- 2. Vertical Line

$$
x=a \quad x=5
$$

- No y term
- Crosses x axis

Special Domains and Ranges

- Rules for making x y chart
- Can only choose certain values
- $x \geq 5$ means the x values start at 5 and get bigger
- for the x 's
- $x \leq 0$ means the x values start at 0 and get smaller
- $3 \leq x \leq 7$ means the x values start at 3 and only go to 7

3.3 Graph Using Intercepts

- Easier way to Graph.
- Use the two key points
- 1. x-intercept, where line crosses x - axis, $y=0$
- 2. y-intercept, where line crosses y-axis, $x=0$
- 2 points determine a line
- To find intercepts:
- 1. let $x=0$, solve for y
- 2. let $y=0$, solve for x
- Ex.) $y=2 x-5$
- 1. $x=0, y=2(0)-5 \quad y=-5$
- 2. $y=0 \quad 0=2 x-5$
-
-
-

$\frac{5}{2}=\frac{2}{2} x$
$-\quad 2 \frac{1}{2}=x$

3.4 Find Slope and Rate of Change

- Slope: the tilt of the line, slant between 2 points

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \\
& m=\frac{\text { rise }}{\text { run }}=\frac{\text { change in } y}{\text { change in } x}=\frac{y_{2-} y_{1}}{x_{2}-x_{1}}
\end{aligned}
$$

- Positive

Negative
Zero
No
(horizontal)
(Vertical)

Rate of Change

- Find Slope of 2 points in chart: $\frac{\$ 12}{2 h}$
- Divide ratio to find rate $\$ 6 / \mathrm{hr}$
- Find missing x value or y value given slope
- Ex: $(1,2)(3, y)$ if $m=\frac{2}{3}$

3.5 Graph Using Slope-Intercept Form

- Standard Form: $a x+b y=c$
- Slope-Intercept Form: $y=m x+b$
$-m$ is the slope
$-b$ is the y-intercept $(0, b)$
- Must be in slope-intercept form to pick out the slope and intercept

To Graph

- Using Slope and Intercept
- 1. Put in slope-intercept form:

$$
-y=m x+b \quad \text { (Solve for } y \text {) }
$$

- 2. $\mathrm{m}=$ b =
- 3. Start at b, on y-axis
- 4. move m from $b, \frac{\text { rise }}{\text { run }}$

Parallel Lines

- Lines are parallel if the slopes are the same

$$
\begin{aligned}
& -y=3 x+6 \\
& -y=3 x-2
\end{aligned}
$$

3.6 Direct Variation

- Another kind of linear equation
- Comes in form $\mathbf{y}=\mathbf{m x}$
- Reads: y varies directly with x
- The constant of variation: m
- To graph: line that always goes through origin

3.7 Linear Functions

- Linear Function: replaces y with $f(x)$

$$
-f(x)=m x+b
$$

$-m$ is slope

- b is y -intercept
- Example: $f(x)=2 x+1$
$-f(3)$
- plug in 3 for $x \quad f(3)=2(3)+1 \quad f(3)=7$
$-f(x)=3$
- plug in 3 for $y \quad 2 x+1=3 \quad x=1$
- To Graph: use slope(m) and y-int. (b)
- Remember: $1^{\text {st }}$ point b (y-intercept)
then slope (m) $\frac{\text { rise }}{\text { run }}$
- The parent function: $f(x)=x$

